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Abstract

A novel, time-independent finite-difference method for analyzing complete two-dimensional sloshing motion (surge,

heave and pitch) in a tank has been developed based on the primitive 2D Navier–Stokes equations. Both the fully non-

linear free surface condition and fluid viscosity are included. The boundary of the tank is mapped onto a fixed square

domain through proper mapping functions and stretched meshes are employed near boundaries in order to more accu-

rately evaluate the large disturbance of fluid along the boundary.

The sloshing displacement agrees well with previously published results. The maximum transient amplitude is much

larger than that of the steady-state. Clear beating phenomenon can be found when the tank is excited by near resonance

frequency. The frequency dependence and Reynolds number effects are studied. For a fixed forcing-function amplitude,

the sloshing response is greatest near resonance. An analysis under coupled surge and pitch motions is also made. The

coupling effect is significant and simultaneous surge, heave and pitch motions should be included in the tank sloshing

analysis. A simple formula is derived to approximate the horizontal force coefficient, CF, on the tank walls. The formula

implies that CF is dominated by the free surface displacement when the tank is excited by small surge frequencies.

Whereas CF is attributed to added mass effects when the tank is under higher surge frequency forcing. A power spectra

analysis is made to analyze the time series of sloshing displacement. For lower frequency of excitation, the system pre-

sents two peaks corresponding to the forcing frequency and fundamental frequency of the system. For higher frequency

of excitation, the system shows only one major peak at the fundamental frequency. The limitations of the proposed

method are also discussed.
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1. Introduction

Numerous analytical, numerical and experimental analyses of the seismic response of fluid sloshing in a

tank have been published during the last two decades. Ibrahim et al. [28] provide a detailed survey of the

CFD research and a general insight into sloshing problems, while Cariou and Casella [4] give a review of
commercial CFD codes as applied to this problem. The reported CFD methods include some or all of the

following: fluid viscosity, non-linear free surface conditions (weakly or fully non-linear) and wall

conditions.

The earliest analyses were simply linear, weakly non-linear and inviscid analyses (such as [2,16,19]

among many others). In the years following 1990, fully non-linear free surface boundary conditions, com-

plete primitive Navier–Stokes equations and fluid viscosity were included in the published models. Neglect-

ing the convective acceleration, and using both a velocity correction method and a Lagrangian finite

element method, Okamoto and Kawahara [29] incorporated the viscosity of fluid in their analysis of the
seismic response of a sloshing fluid. However, in their model, the free surface velocity and the hydrody-

namic pressure at the free surface, rather than being calculated from the dynamic free surface boundary

conditions, were simply given values. By solving the depth-averaged Navier–Stokes equations for shallow

water, Koh et al. [14] studied the effects of rectangular liquid dampers on the reduction of structural vibra-

tion during earthquakes. The free surface condition and the base shear were approximated empirically.

Armenio and Rocca [1] analyzed the sloshing of water in a rectangular container under pitch-motion

excitation. Kim [13] used a SOLA scheme to solve the primitive Navier–Stokes equations, including the free

surface boundary condition, and studied the sloshing flow in 2D and 3D liquid containers, with and with-
out internal baffles. The governing flow equations were written in the moving coordinate system of the tank.

The tank was covered with a ceiling and the impact load was studied in the analysis. Both reports ignored

surface tension and the tangential stresses at the free surface, and assumed a zero hydrodynamic pressure at

the free surface. Wu et al. [21] presented an analytical solution of the linearized Navier–Stokes equations

with a linear free-surface condition for sloshing free surface waves in a two-dimensional rectangular tank.

All the non-linear terms and complete free surface boundary conditions were neglected in the analysis. That

study reported the effect of viscous effects and exciting frequencies on the sloshing history for small

Reynolds numbers. Celebi and Akyildiz [5] reported a 2D tank viscous sloshing analysis. Again the
Navier–Stokes equations were written in the moving coordinate system of the tank which was forced to

move harmonically along a vertical curve with rolling motion. The free surface motion was calculated

by the volume of fluid (VOF) technique.

Under zero gravity, Billinghen [3] studied the non-linear sloshing of fluid in a two-dimensional tank. A

fully non-linear free surface boundary condition and viscous free surface effects were included in the anal-

ysis. The velocity of the contact line was a given single-valued function of the dynamic contact angle (sur-

face gradient) between the fluid and the solid wall. Most recently, Hill [11] presented a weakly non-linear

analysis of the transient evolution of 2D standing waves in a rectangular tank. Frandsen [10] reported a
fully non-linear finite difference model for inviscid sloshing fluid in tanks.

The most publications mentioned above are for a tank excited by a single forcing function (surge or

heave). Although, the sloshing phenomena are complex and abundant, these papers provide only limited

discussions of the various flow features that arise in problems of this nature. This paper aims to analyze

a wider range of sloshing phenomena.

In this study, a time-independent finite difference method is developed to solve the two-dimensional

incompressible Navier–Stokes equations with fully non-linear free surface boundary conditions. The gov-

erning equations are written in a coordinate system moving with the tank. The difficulties associated with
the time varying free surface boundary are overcome by the use of proper mapping functions that trans-

form the computational domain to a fixed unit square. The advantage of the proposed method is that

the flow equations are solved in a rectangular grid and boundary tracing is not needed during the solution
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process. Furthermore, re-meshing, due to the moving free surface, is avoided and the mapping precludes the

need to calculate the free surface velocity components explicitly. In addition, smoothing of the free surface

through spatial filtering is unnecessary. However, the disadvantage of the method is that the mapping func-

tion is a non-orthogonal single-valued function and the method is not suitable for large excitation displace-

ments. Thus, the range of allowable forcing amplitudes is limited.
Section 2 introduces the equations of motion for a coordinate system fixed to an accelerating tank. The

fully non-linear free surface boundary conditions are also discussed. Section 3 describes the coordinate

transformations that map the time-dependent domain into a fixed unit square and allow for mesh stretching

at the boundaries. A sensible non-dimensionalization of the governing equations is also presented. The pro-

posed finite-difference method is developed in Section 4 where the full iterative procedure is introduced. Fi-

nally, Section 5 presents the detailed results and provides some discussion.
2. Equations of motion

A fully non-linear model of viscous 2-D waves in a numerical wave tank was developed. As the coordi-

nate system is chosen to move with the tank motions (including surge, heave and pitch motions, see Fig. 1),

the Navier–Stokes equations can be derived and written as ([7,5,27]):
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Fig. 1. Problem definition.
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The continuity equation for incompressible flow is
ou
ox

þ ow
oz

¼ 0 ð3Þ
and the kinematic boundary condition on free surface is
oh
ot

þ u
oh
ox

¼ w. ð4Þ
In the above equations, u and w are, respectively, the fluid velocity components in x- and z-directions,
€xc and €zc are the corresponding ground acceleration components, _h and €h are the pitching angular velocity

and angular acceleration, respectively, p is the pressure, h is the free surface height, q is the fluid density, g is

the gravitational acceleration, and the kinematic viscosity of the fluid is m.
To fulfill the dynamic condition at the free surface, the conservation of linear momentum at the free

surface must hold. In brief, the discontinuity in the normal stress are the free surface due to surface ten-
sion is proportional to the mean curvature of the free surface, and the continuity of tangential stress con-

dition at the free surface must hold when the fluid is assumed to be viscous. However, the surface tension

effect is expected to be small [6] and is neglected in this study. The above conditions can be written as

follows [6]:
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where p0 is the pressure at free surface and d0 is the water depth of distill water in tank. Taking partial dif-

ferentiation of (1) and (2) with respect to x and z, respectively, and summing the results, one can obtain the

following pressure wave equation which is used to solve for the pressure:
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The no-slip condition is applied at the boundary between fluid and solid, that is u = 0 and w = 0 at the

tank walls. Consider a contact line being constrained to move across the solid surface with a speed, say

U. It is known that the contact angle increases or decreases as the magnitude of U increases according to

whether the liquid is advancing or receding [25]. Cox�s paper [8] described the manner in which the con-

tact angle varies with the contact line velocity U. This angle is evaluated by calculating the liquid inter-

face shape near the contact line due to the action of the stresses in the liquid produced by the motion. It

is also well known that for all contact angles other than 180�, there is a non-integrable singularity in the

stress at the contact line that will result in a divergent integral for the drag force on the solid boundary.
In order to avoid this problem, slip between the liquid and solid surface has been postulated (see [24,26])

and this assumption removes the non-integrable stress singularity. The treatment of the contact line by

Tang et al. [18], which has been successfully applied by both Chen [6] and Huang et al. [12], is adopted

here. Tang�s assumption states that the no-slip boundary condition is relaxed in the region of the first two

nodes on the tank wall beneath the free surface. Since the mesh size near the free surface is stretched, the

slip condition is only applied in a very small region, less than 1% of the fluid depth. The results are com-

pared with those based on the assumption invoked by Billinghen [3] in order to verify the size of the

stretched region.
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3. Coordinate transformation and dimensionless equations

A number of finite difference (FDM) and volume methods have been reported in the literature for

solving for the free surface profile of sloshing tanks. The most well-known schemes are SURF, MAC

and VOF methods. The SURF scheme assumes a single-valued surface profile and is potentially able
to deal with a uniform representation of large free surface waves and even for the inception of overturn-

ing. The MAC method is based on Lagrangian concepts and can treat overturning waves and reentry

inception with simple logic. In contrast, the VOF method, which is the most popular method used in

the literature, tracks the volume occupied by the fluid rather than the free surface. All of the above meth-

ods can properly calculate the instantaneous free surface displacement. However, they all require complex

computer programming in order to treat the time varying free surface boundary and update the compu-

tational mesh. The r-transformation is also frequently used in treating time varying free surface flows

[10,15,17].
In contrast, the present study uses simple mapping functions to remove the time-dependence of the free

surface of the fluid domain. The time-varying fluid surface, sloped tank walls and non-horizontal tank bot-

tom can be mapped onto a square by the proper coordinate transformations [22]:
x� ¼ x� b1
b2 � b1

ð8Þ
and
z� ¼ 1� z� d0

hðx; tÞ ; ð9Þ
where the instantaneous water surface, h(x,t), is a single-valued function measured from tank bottom, d0
represents the vertical distance between still water surface and tank bottom, b1 and b2 are horizontal dis-
tance from the z-axis to the left and right walls, respectively (see Fig. 1). Through Eqs. (8) and (9), one can

map the left wall to x* = 0 and right wall to x* = 1, the free surface to z* = 0 and the tank bottom to z* = 1.

In this way, the computational domain is transformed to a fixed unit square domain. The main advantage

of the transformations is to map a wavy and time-dependent fluid domain onto a time-independent unit

square domain. In this model, re-meshing due to the wavy free surface is avoided. Besides, the mapping

implicitly deals with the free surface motion, and avoids the need to calculate the free surface velocity com-

ponents explicitly. Extrapolations are unnecessary and free surface smoothing by means of a spatial filter is

not required.
The coordinates (x*,z*) can be further transformed such that the layer near the boundary is stretched to

capture the sharp local velocity gradients. The following exponential functions provide these stretching

transformations:
X ¼ b1 þ ðx� � b1Þek1x
�ðx��1Þ; ð10Þ

Z ¼ b2 þ ðz� � b2Þek2z
�ðz��1Þ. ð11Þ
The constants k2 and b2 control the mesh size near the free surface and tank bottom. Similarly, the con-
stants k1 and b1 map irregular finite difference mesh sizes (Dx*) near the tank walls to the regular ones

(DX) in the computational domain (X,Z). Thus, the geometry of the flow field and the meshes in the com-

putational domain (X–Z system) become time-independent throughout the computational analysis. Fig. 2

illustrates the coordinate transformations in the present model.

Finally, the remaining variables can be non-dimensionalized in the following ways. The velocity compo-

nents are normalized by the long wavelength wave celerity such that U ¼ u=
ffiffiffiffiffiffiffi
gd0

p
and W ¼ �w=

ffiffiffiffiffiffiffi
gd0

p
. The

pressure, p, is normalized by the hydrostatic pressure qgd0 which d0 is the undisturbed fluid depth, i.e.,
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P = p/qgd0. The dimensionless time is defined to be T ¼ t
ffiffiffiffiffiffiffiffiffiffi
g=d0

p
. The fluid depth is normalized by d0, i.e.,

H = h/d0, the rotation is normalized as H = h/(2p), and Xc = xc/B, Zc = zc/B, where xc and zc are the ground

displacements in the x and z directions, and B is the tank-width.
With the aforementioned transformations and dimensionless variables, Eqs. (1)–(6) can be written in the

following dimensionless forms:
UT þ C5C7UX þ C6C8UZ þ C1C7UUX þ C2C8UUZ þ C3C7WUX þ C4C8WUZ þ 4pWHT
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where
R1 ¼ C1C7UX þ C2C8UZ ; R2 ¼ C3C7UX þ C4C8UZ ; R3 ¼ C1C7W X þ C2C8W Z ;

R4 ¼ C3C7W X þ C4C8W Z ;

ðC1C7UX þ C2C8UZÞ þ ðC3C7W X þ C4C8W ZÞ ¼ 0; ð14Þ

HT þ C5C7HX þ C6C8HZ þ C1C7HXU þ C2C8HZU ¼ �W ; ð15Þ

C3C7UX þ C4C8UZ ¼ �ðC1C7W X þ C2C8W ZÞ þ 4
ðC3C7W X þ C4C8W ZÞðC1C7HX þ C2C8HZÞ

ðC1C7HX þ C2C8HZÞ2 � 1
h i ð16Þ
and
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p0 ¼ ðH � 1Þ þ 2
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In Eqs. (12), (13) and (17), the Reynolds number Re is expressed as
Re ¼
ffiffiffiffiffiffiffi
gd0

p
d0

v
. ð18Þ
And the dimensionless pressure wave equation becomes
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In the above equations, C1–C10 are the coefficients due to the coordinate transformations and are listed in

Appendix I. UT denotes a partial derivative of U with respect to the dimensionless time; the other terms

have similar meanings. For a fully non-linear free-surface condition, the kinematic free surface condition
must be applied at the instantaneous free surface location, i.e., at z = h � d0. The coefficients C1–C10 that

are related to the free surface position are updated during each iteration of the solution process.
4. Finite-difference method

In this two-dimensional analysis, the fluid flow is solved in a unit square mesh in the transformed flow

domain. A staggered grid system is used in the analysis. That is, the pressure P is defined at the center of a
cell, whereas the velocity components U and V are calculated 0.5DX behind and 0.5DY above the cell cen-

ter, respectively. The Crank–Nicholson second order finite difference scheme, and the Gauss–Seidel point

successive over-relaxation iterative procedure, are used to calculate the velocity and pressure, respectively.

A brief description of the numerical procedure is given below. When Eqs. (12), (13) and (15) are considered

to be balanced at T = (n + 1/2)DT, one can express them in the following finite-difference form:
Unþ1
ij ¼ Un

ij � DT ½Uc
ij þ Us

ij þ }ij�; ð21Þ

W nþ1
ij ¼ W n

ij � DT ½W c
ij þ W s

ij þ k
5

ij�; ð22Þ

Hnþ1
i ¼ Hn

i � DT ðRi1 þ W i1Þ. ð23Þ

In these equations, the superscript n represents the time index (i.e., T = nDT). The terms without a super-

script are at T = (n + 1/2)DT. The velocity components at T = (n + 1/2)DT can be approximated as the mean

values between nDT and (n + 1)DT. All the terms on the right-hand side of Eqs. (21) and (22) are applied at

the same nodes asUij andWij. The terms }ij and k5ij are the corresponding pressure gradients in the X and Y

directions, respectively. The terms Us
ij and W s

ij are the corresponding finite-difference expressions for the
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viscous terms, the third line of Eqs. (12) and (13). All of the remaining terms in Eqs. (12) and (13) are grouped

into Uc
ij and W c

ij, which include the finite-difference expressions for the convective acceleration and the terms

related to pitch and surge motions. In Eq. (23), Rij is the non-linear term of Eq. (15).

The pressure is evaluated by solving the pressure wave equation, Eq. (20). For T = (n + 1/2)DT, one can
express the finite-difference equation for pressure in the following form:
P ij ¼
W
aij

½Pij þ Xij� þ ð1�WÞP �
ij; ð24Þ
in which aij = the sum of coefficients of pressure Pij, W is the relaxation parameter, and P �
ij is the previous

iterated pressure. The terms Pij and Xij represent, respectively, the finite-difference expression of the pres-

sure gradient and the non-linear terms. The superscript, (n + 1/2), for Pij, Pij, and Xij are also omitted here.

The detailed finite difference expressions for Pij and Pij are lengthy and are, therefore, omitted from the

text. Once the pressure field has been solved by iteration, the velocity components Un + 1 and Wn + 1 can

be calculated from Eqs. (21) and (22), respectively, and the water surface profile Hn + 1 from Eq. (23).

The time step is restricted by the following two conditions:
Dt < min
Dxmin

jui;jj
;
Dzmin

jwi;jj

� 	
;

vDt <
1

2

Dx2minDz
2
min

Dx2min þ Dz2min

.

ð25Þ
The first condition states that a fluid particle cannot move more than one cell in a single time step. The

second ensures that the diffusion of momentum is not significant over more than one cell in one time step.

Besides the constraint on the time-step, another major difficulty faced by the difference scheme is the

stretched mesh near the boundary and the accuracy of the second derivative viscous terms. In order to over-

come this difficulty, the finite difference approximation of oR1/oX requires the evaluation of R1 at nodes

(i � 1,j) and (i + 1,j) and the finite difference expression of oR1/oZ requires the evaluation of R1 at nodes

(i,j � 1) and (i,j + 1) to achieve desired accuracy. The detailed finite difference expressions for R1 in oR1/

oX and R1 in oR1/oZ are listed in Appendix II. Similar finite difference approximations are made for R2,
R3 and R4. The accuracy improvement achieved by the present finite difference approximation is given

in Appendix III. The convergence criterion for iteration of U, W and P is 10�5, for H is as small as 10�9.

The detailed implicit iterative solution procedure is given below:

1. Specify the initial conditions.

2. Calculate coefficients C1–C10.

3. Calculate Uc
ij; W c

ij; Us
ij and W s

ij.

4. Substitute the results of step 3 into Eq. (21) in order to calculate Xij.
5. Calculate }ij and k5ij, then substitute the results into left hand side of Eq. (19).

6. Calculate Pij from Eq. (24).

7. Repeat steps 5 and 6 at least 20 times, then check the convergence; that is, check if

jPk + 20 � Pkj < 10�5 in which k represents the iteration number.

8. Repeat steps 5–7 until the convergence criterion for Pij is reached.

9. Calculate Uij and Wik from Eqs. (21) and (22), respectively.

10. Check if jUk + 1 � Ukj < 10�5 and jWk + 1 � Wkj < 10�5. If the convergence is not reached, repeat

steps 3–10.
11. Calculate Hij by Eq. (23) and check if jHk + 1 � Hkj < 10�9. If the convergence is not reached, go to

step 2 and update the coefficients relating to H.

12. If H is converged then begin next time step.
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5. Results and discussion
For the purpose of this paper, a fluid system of fixed size (0.9 m tank width and 0.6 m undisturbed fluid

depth) is used in most of the simulations. Both surge and pitch excitations are considered in the analysis.

The surge motion is given as €X 0 ¼ �X 0x2
x sinxxt where X0 = maximum horizontal amplitude and

xx = surge frequency. The pitch motion is €h0ðtÞ ¼ �H0x2
p cosxpt where H0 = maximum angular displace-

ment and xp = angular frequency. The stretching factors, k1 = k2 = 5, are used with a mesh size of

80 · 80, with the corresponding cell dimensions of DX = DY = 0.0125. A time step of DT = 0.001 was deter-

mined from the numerical stability requirements, Eq. (25), and a parametric study.

5.1. Viscous effects on sloshing displacement

Fig. 3(a) compares the time-history of the free surface elevation at the right wall of the tank using

both a viscous and inviscid analysis, when only surge motions are present. As shown in the figure, the

viscous effects significantly reduce the transient amplitude. Fig. 3(b) compares the free surface elevation

at the wall when the tank undergoes purely pitch motion, and again significant viscous effects can be

seen. Both figures also include the results of an inviscid analysis by Nakayama and Washizu [16]. The
agreement between Nakayama�s results and those of the present model based on an inviscid assumption

is very good.
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Fig. 3. (a) Under a horizontal ground acceleration, the comparison of the results between viscous and inviscid analyses, d0 = 0.6 m,

B = 0.9 m. (b) Under a pitch motion, the comparison of the results evaluated by viscous and inviscid analyses, d0 = 0.6 m, B = 0.9 m.
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Fig. 4 plots the time-history of the free surface elevation at the left wall of the tank under near resonance

excitation for Re = 2000. The absolute largest sloshing amplitude is observed during the first transient cycle.

The maximum amplitude decays during the second and subsequent cycles until finally the system ap-

proaches a constant amplitude steady-state. This behavior is known as beating [7]. The maximum transient

amplitude is almost twice as large as that of the steady-state response. In a dam-reservoir or tank-storage
during an earthquake, this large transient response may cause overtopping or ceiling impact and may con-

stitute a potential hazard. The figure also depicts the sloshing history of a surface wave, obtained from an

inviscid analysis. In this case, the largest sloshing amplitude of each wave train is also seen to decline but at

a rate much less than that determined by a viscous analysis. Figs. 3 and 4 reveal that the sloshing is signif-

icantly affected by viscous effects and clearly viscosity must be included if a realistic simulation of tank

sloshing is to be developed.

For the purpose of further validation, the breadth/depth ratio of the tank was chosen to be L/d0 = 2.0.

Under harmonic surge motion, the analytical linearized solution of the sloshing displacement g was derived
by Faltinsen [9] and Wu et al. [20] as g = g1 + g2 where:
Fig. 4.

solid l
g1 ¼ X 0 g xx2
x þ

X1
n¼0

Cnxx sin knx

 !,
sinxxt;

g2 ¼ �X 0 g
X1
n¼0

xnðCn þ Hn=x
2
xÞ sin knx sinxnt

, ð26Þ
and kn = (2n + 1)p/L; x2
n ¼ gkn tanh knd0; Hn ¼ x3

x4=Lð�1Þn=k2n, and Cn ¼ Hn=ðx2
n � x2

xÞ. Fig. 5 shows the

sloshing displacement at the left wall for various excitation frequencies. The linear analytical solution of

Wu et al. [20] and the numerical results of Chen and Chiang [7] (inviscid analysis) are also shown in the

figure and the agreement is very good. Under near resonance excitation, Figs. 5(a) and (c) also show beating
phenomenon. The frequency of the envelope of the amplitude-modulated wave is Dx = jxn � xxj and for

xx/x1 = 1.1 in Fig. 5(a) its period is 2p/Dx (=11.82 s), x1 the first fundamental frequency. The results for

xx/x1 = 0.999 yield a very large sloshing amplitude and a very long beat period (=1182 s).

To validate the use of the slip boundary condition for the moving contact line, Fig. 6(a) compares the

sloshing displacement predicted using this slip condition to that predicted using Billingham�s prescribed
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function, i.e., oh/ot = koh/ox. Three different values were chosen for the parameter k in Billingham�s func-
tion, namely k = 0.1, 1, and 4. As shown in the figure, the results of the present study agree well with those

using Billingham�s assumption when k = 1 and 4. However, when a value of k = 10 was selected, the sim-
ulation was divergent. The reason for this behavior may be due to the velocity at the contact line being too

much larger than that of the water at the ambient free surface.

The effect of the mesh stretching factor, k1, is illustrated in Fig. 6(b) where the sloshing displacement at

the left wall is shown for k1 = 5 and k1 = 10. The difference between the predictions of the two simulations is

negligible.
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5.2. Frequency dependence and Reynolds numbers effects on sloshing amplitude

The free surface elevation at the right wall under only surge conditions is plotted in Fig. 7 for a

range of excitation frequencies, xx. The surface elevation on the left wall is almost negligible when

the excitation frequency is below 0.69x1. Fig. 8 shows the maximum end wall free surface displacement

as a function of the relative forcing frequency and clearly demonstrates the occurrence of resonance for

sloshing fluid in tank under a surge motion. The first resonant peak is shifted to the left of the first

fundamental mode (assuming an ideal fluid) due to the non-linearity of the fluid sloshing and also

the effect of the viscosity of the fluid. A more detailed discussion of this phenomenon can be found
in Hill [11].

Fig. 9 plots the absolute transient surface displacement at the left wall as a function of Reynolds number

for various surge frequencies. Here the Reynolds number is defined to be Re = u0d0/t where the maximum

surge velocity is u0 = x0xx. The figure shows that the peak surface elevation increases almost linearly with

Reynolds number for a given frequency of excitation. For a fixed frequency, xx, the Reynolds number is

proportional to the surge amplitude. The peak surface elevation is, therefore, proportional to the amplitude

of the surge motion. However, for a constant Reynolds number, the peak surface elevation varies with

frequency.
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Fig. 10 depicts the sloshing displacement at the left wall for the case of a constant frequency of excitation

with various water depths, and presents additional evidence of the importance of frequency in determining

the sloshing amplitude.

5.3. Coupled surge, heave and pitch motions

A tank may be simultaneously excited by horizontal, vertical and rotational ground acceleration dur-

ing earthquakes. The heave motion is just a change in gravitational acceleration, and its effect is expected
to be small if the free surface of the tank is initially undisturbed. However, if the free surface is initially

tilted or it is disturbed by surge or pitch motions, the vertical excitation would enlarge the surface
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elevation during tank motion. In this section, several simulations are carried out to study the coupling

effects, vertical excitation effects and the effects of initial surface conditions on the sloshing displacements.

The surge motion is given as xx/x1 = 0.7, and ax(t) = �0.0036gcos(xxt), the heave motion is given as x1/
xh = 1.253, g(x,t = 0) = acos(knx), kn = p/B, az(t) = �0.5gcos(xht) and ax2

1=g ¼ 0.0014; and the pitch mo-

tion is given as xp/x1 = 0.8, ap(t) = �0.005gcos(xht). Fig. 11 compares the free surface variations at the

left wall under different combinations of ground excitation. Figs. 11(a)–(c) are, respectively, the surface

elevations at the left wall of the tank under solely surge, heave and pitch motion, respectively. Fig. 11(d)

shows the surface elevation due to coupled surge and heave motion, together with a linear superposition

of the results evaluated from independent surge and heave motion. The initial free surface is a cosine

shape. Significant differences between the coupled and superimposed motions are evident, providing

strong evidence for the importance of the non-linear flow characteristics [7]. Fig. 11(e) depicts the corre-
sponding results for surge and pitch motions. Differences between the two motions are insignificant indi-

cating that the coupling, in this case, is insignificant. The case of the complete 2D excitation due to

coupled surge, heave and pitch motions, is plotted in Fig. 11(f), and significant coupling effects are again

noted.



Fig. 11. The coupling effects of simultaneous action of surge, heave and pitch motions.
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The effect of the initial free surface condition is illustrated in Fig. 12. Fig. 12(a) compares the surface

elevation due to coupled surge and heave motions with different initial surface conditions. The sloshing dis-

placement of a surface with an initial cosine shape is much larger than that with an initially plane surface.
Assuming an initial plane surface, Fig. 12(b) plots the surface elevation at the left wall due to surge motion



Fig. 12. The effects of initial free surface; (a) the comparison of surface elevation at left wall by coupled surge and heave motions with

different initial free surface; (b) surface elevation at left wall by surge motion only and by coupled surge and heave motions with initial

plane surface; (c) the comparison of surface elevation by coupled surge and heave motions and by superposition of separate motion

with initial plane surface.
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alone and also the elevation due to coupled surge and heave motions. No significant variation is observed

before t = 5 s but pronounced differences occur once a large surface disturbance has been generated and the

vertical excitation enhances the disturbance initially generated by the surge motion. The vertical excitation

changes the acceleration of gravity and also varies the Froude number which is closely related to the var-

iation of the surface elevation. The significance of vertical excitation on tank sloshing was also reported in

Frandsen [10]. For an initially plane surface, vertical excitation alone does not generate any surface distur-

bance. Fig. 12(c) shows no difference between the superposition of surface sloshing of independent surge

and heave motion and the surface elevation generated by single surge motion.

5.4. Evolution of velocity vectors

Fig. 13 shows the evolution of fluid velocity in the tank for two times, t = 3.85 and 4.1 s, under a hor-

izontal excitation. At t = 3.85 s, the free surface profile has a positive gradient and the free surface elevation

at the right wall reaches its peak, with the fluid velocity almost zero. After t = 3.85 s, the direction of the

fluid velocity switches from rightward to leftward and the magnitudes of the velocities continue to increase

until they reach their maximum values at t = 4.1 s and the fluid surface is a horizontal plane. Thereafter, the
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fluid surface has a negative gradient. There are no obvious eddies shown in the tank during this surge

excitation.

The evolution of the velocity in the tank under simple pitch motion is plotted in Fig. 14. Under surge

motion, the fluid velocity at the tank walls becomes zero when the surface profile at the left or right wall

is a peak. When the tank is excited by a pitch motion, the velocities at the tank walls do not vanish but
constantly rotate when the surface elevations at both walls are a peak or trough. At t = 4.75 s, the clockwise

rotating momentum creates a clear clockwise circular eddy in the upper part of the tank. As shown in the

figure, fluid in the upper part of the tank moves to the right and parallel to the free surface, except for the

fluid in the upper right corner. The surface elevations at both walls stop increasing and decreasing. Just

0.05 s later, at t = 4.8 s, the eddy is compressed by the rotating free surface and its shape becomes elliptical.

In a very short time, the eddy keeps sinking as the velocity of the right moving fluid in the upper part of the

tank significantly increases, and the velocity vectors at the left wall switch direction from upward to down-

ward. However, the velocities in the right upper corner do not change direction, and continue to point
downward. At t = 4.85 s, the elliptical eddy is further stretched and split into two eddies, where the coun-

terclockwise rotating fluid occupies most of the fluid field. The surface becomes a horizontal plane again at

t = 5.045 s and the separated eddies vanish. Part of the fluid is confined to the lower part of the tank due to

the sinking eddies and thus the eddy effectively reduces the surface elevation in the tank.

More detailed information about the fluid motion due to pure pitching motion can be garnered from the

plots of flow streamlines depicted in Fig. 15. The table listed in the figure indicates the time of each stream-

line pattern. Also shown in the figure is the time series of the free surface displacement at the left wall from

t = 4–5.5 s. At t = 4.2 s, the surface elevation at the left wall is a trough and the surface displacement on
both walls will cease rising or falling, and will start to change direction. The clockwise rotating surface pro-

file is associated with the pitch forcing and creates a clear clockwise eddy at the upper part of the tank. This

eddy sinks very quickly and is depressed by the rocking free surface. The surface gradient decreases from

maximum positive to zero and then to maximum negative. The eddy sinks further, splits into two parts,

and vanishes when the free surface becomes a horizontal plane. No eddy reappears until the free surface

elevation at the left wall increases to a peak value and starts changing direction. At this point, a clear
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Fig. 141 The evolution of velocity vectors of sloshing fluid in a tank by pitch motion.
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counterclockwise eddy appears in the upper part of the flow. This eddy will also sink, split and disappear

when the free surface returns to a horizontal plane.

The streamline patterns generated by coupled surge and pitch motions are now considered. Two cases

are studied in this section. The first case assumes the acceleration of the surge motion is ax(t) = �a sin(xxt),
and that of pitch motion is ap(t) = �acos(xpt), xx = xp. And the second case assumes ax(t) = +a sin(xxt),

and that of pitch motion is ap(t) = �acos(xpt), xx = xp. The streamline patterns for both cases are shown in

Fig. 16. A very interesting phenomenon is found in the first case. At t = 3.74 s, the free surface elevation at

the left wall is a peak, and the free surface profile has a maximum negative gradient. The eddy in the upper

portion of the tank sinks, but it does not disappear as the free surface becomes a horizontal plane. Instead

the split eddies start to merge and rise when the gradient of the surface profile becomes positive. The eddy

keeps rising and finally vanishes at the tank surface when the surface elevation at the left wall becomes a

trough, and the eddy does not reappear until the surface elevation at the left wall of the tank becomes a
peak again.



Fig. 15. The streamline patterns of the sloshing fluid in a tank under pitch motion.
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Fig. 16. The streamline patterns of coupled surge and pitch case (a) the upper parts: surge (�sin) + pitch (�cos); (b) the lower parts:

surge (+sin) + pitch (�cos).
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In the second case, the streamline pattern development is similar to that of the tank excited solely by

pitch motion. In the first case, the eddies exist for approximately three quarters of one sloshing cycle, while

in the second case it is only present over half a cycle. The eddy could enhance the fluid mixing in the tank.

Thus, the tank sloshing due to coupled surge and pitch motion in the first case may cause better fluid mixing

than when the tank is excited by pitch motion alone or by the second combination of coupled pitch and
surge motion.

The streamline patterns for a tank excited by coupled surge, pitch and heave motions are illustrated in

Fig. 17. The forcing accelerations of the pitch and surge motions are the same as the second combination of

the previous investigation. Similar phenomenon to those due to pitch motion alone can be seen and the

inclusion of heave motion does not significantly increase the fluid mixing during tank sloshing.
5.5. Hydrodynamic force coefficients

The forces acting on the tank are attributed to pressure and viscous stresses. The viscous stresses are par-

allel to the wall and the normal force on the wall is, therefore, primarily attributed to the hydrodynamic

pressure. In the moving coordinate system, the normal velocity of water at the tank wall is zero, and the

pressure gradient normal to the tank wall during surge motion can be written as
1

q
op
ox

¼ �€xc.
According to the added mass concept, [30], the pressure along the tank wall under surge acceleration can be

assumed to be
pðzÞ ¼ �q€xcxeðzÞ þ C; ð27Þ

where xe(z) is the effective length of water accelerated during tank motion and C is an integration constant

to be determined. The dynamic free surface boundary condition indicates
pðz ¼ h� d0Þ ¼ qgðh� d0Þ þ 2l
1þ oh

ox

� �2h i
1� oh

ox

� �2h i ow
oz

. ð28Þ
For simplicity, we may assume oh/ox<1 and xe(z = h � d0) = 0, thus, C ¼ qgðh� d0Þ þ 2l ow
oz , and we have
pðzÞ ¼ �q€xcxeðzÞ þ qgðh� d0Þ þ 2l
ow
oz

. ð29Þ
If the hydrodynamic force coefficient is defined to be CF ¼
R
p dz=qgd2

0, then
CF ¼ qx0x2
x sinxxt

Z h

0

xeðzÞ dz=qgd2
0 þ ðh� d0Þh=d2

0 þ 2l
ow
oz ðz¼h�d0Þ

h=qgd2
0. ð30Þ
The first term is attributed to the added mass effect; the second term to the kinematic free surface displace-

ment, and the last term to the effects of viscosity on the free surface wave. This final term is expected to be

small as ow/oz � 0 due to the non-slip boundary condition at the tank wall. We can see from Eq. (30) that

the hydrodynamic force coefficients are dominated by the free surface displacement when the excitation

surge frequency is small, and are dominated by the added mass effect when the surge frequency is large.

These effects on CF are combined at a medium excitation frequency.
Fig. 18 plots the time histories of surface displacement at the left wall of the tank under surge motion

for various excitation frequencies. Fig. 19 shows the corresponding histories of hydrodynamic force co-

efficients. Comparing these two figures, it can be observed that the hydrodynamic force coefficients are

linearly related to the sloshing surface displacement when the surge frequency, xx, is less than x1. In



Fig. 17. The streamline patterns of the sloshing fluid in a tank under coupled surge, pitch and heave motions.
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Fig. 18. Under surge motion, the time-history of surface displacement at left tank wall with various exciting frequencies.
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Fig. 19. Under surge motion, the time-history of hydrodynamic force coefficient acting on left tank wall, with various exciting

frequencies.
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dam hydrodynamics, the free surface wave effects are negligible and the ratio of the hydrodynamic force

coefficients to the acceleration due to excitation is a constant (=0.525, [7,23]). Fig. 20 further compares

the numerically calculated hydrodynamic force coefficients with those evaluated by Eq. (30). For the
Fig. 20. (a) Under surge motion, the time-history of hydrodynamic force coefficient acting on left tank wall, Re = 200. Solid line:

calculated CF, dashed line: gh=d2
0. (b) Under surge motion, the time-history of hydrodynamic force coefficient acting on left tank wall,

Re = 200. Solid line: calculated CF, dotted-line: 0.525ax(t)/g; ax(t): surge-acceleration.
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third plot of Fig. 20(b), the frequency of excitation xx is as large as 10x1 and the ratio of CF to ax(t) is

�0.525.

5.6. FFT analysis of sloshing displacement

A fast Fourier transform (FFT) provides a spectral analysis of the sloshing motion in the tank and en-

ables the dominant response frequencies of the system to be identified. Fig. 21 illustrates the power spectral

density as a function of frequency for the sloshing displacements under various excitation frequencies. The

left and right columns of figures are the power spectral density for two sloshing periods (t = 0–10 s) and

(t = 40–50 s), respectively. As can be seen in the top two graphs in Fig. 21, the dominant frequencies of

the sloshing displacement are, respectively, 0.423 and 0.678 Hz. These are exactly equal to the frequencies

of excitation, 0.5x1 and 0.8x1. However, the first fundamental frequency of the water in the tank, which is

equal to 0.847 Hz, plays a less important role in the system. When the frequency of excitation is less than
the first fundamental frequency of the system, the water in the tank has enough time to pick up the external

excitation and the frequency of the sloshing surface displacement is, therefore, controlled by the frequency

of the external excitation.

As the frequency of excitation nears, but is still less than the fundamental frequency x1, no second peak

appears. When xx is equal to 1.1x1, the external excitation frequency still dominates the frequency of the

sloshing displacement throughout the time history. As xx increases to 1.5x1 and 2x1, the fundamental
Fig. 22. Under surge motion, the time-history of surface displacement at left tank wall with exciting frequency = 10x1.



Table 1

The ratio of the sloshing displacements

Case 1 2 3 4 5 6 7 8 9

x0 (m) 0.005 0.007 0.01 0.005 0.007 0.01 0.005 0.007 0.01

xx (rad/s) 5 5 5 5 5 5 5 5 5

B (m) 1 1 1 1 1 1 1 1 1

d0 (m) 0.1 0.1 0.1 0.15 0.15 0.15 0.2 0.2 0.2

g+/g� 1.38 1.71 2.15 2.0 2.10 2.42 2.12 2.77 2.9

10 11 12 13 14 15 16 17

x0 (m) 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.007

xx 0.95x1 0.95x1 0.95x1 0.95x1 0.95x1 0.95x1 0.95x1 0.95x1

B (m) 1 1 1 1 1 1 1 1

d0 (m) 0.1 0.1 0.15 0.15 0.2 0.2 0.5 0.5

g+/g� 1.55 1.8 1.9 2.25 1.9 2.54 1.2 1.3

Fig. 23. The sloshing displacements at left wall under surge motion with constant surge frequency xx = 5 rads/s, constant tank

width = 1 m and various water depths and various exciting surge displacement.
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frequency, together with the excitation frequency, dominate the frequency of the system during the initial

time period. However, by t = 40–50 s, the significance of the fundamental frequency is significantly reduced

and the frequency of excitation becomes dominant. The reason for this is that the periods of the excitation

for xx = 1.5x1–2x1 are smaller than that for xx < x1, and the system needs more time to adjust to the pace

of the external excitation. The excitation frequency will control the system at the later period as the system
responds to the external forcing and the influence of x1 diminishes.

When the frequency of excitation is larger than 3x1 (see Fig. 22), the period of the external excitation is

too short to let the dynamic system adjust to the frequency of the excitation and the first fundamental

frequency, therefore, becomes the dominant frequency of the system throughout the entire time history.
Fig. 24. The sloshing displacement under near resonant excitation with various exciting surge displacement and water depths,

xx = 0.95 x1.
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In this case, the effect of the excitation frequency on the sloshing displacement seems to be at the level of

noise.

5.7. The limitation of the proposed scheme

In this section, extensive simulations were made to test the limitation of the present time-independent

finite-difference scheme. Table 1 shows the cases that were simulated in this section. For each depth/width

ratio (d0/B), four excitation displacements were applied: x0 = 0.005, 0.007, 0.01 and 0.015 m. Each simula-

tion lasted for 8 s. The simulations for x0 = 0.015 m were all divergent before t = 5 s and those results are

not included in the table for comparison. Two excitation frequencies were used in the simulations, one was

xx = 5 rads/s = 0.87x1, the other was xx = 0.95x1 so that near resonant simulations could be performed.

The corresponding sloshing histories of xx = 5 rad/s and xx = 0.95x1 are shown in Figs. 23 and 24,

respectively. The parameter g+ represents the sloshing peak and g� represents the trough. For
xx = 5 rad/s, the non-linear characteristics of the problem are clearly visible for small d0/B ratio. Increases

in sloshing displacement occur as the excitation amplitude increases. For x0 = 0.01 m and d0/B = 0.1, the

largest g+/g� ratio can be as large as 2.15 and this increases with increasing d0/B, with g+/g� ratios of

2.42 and 2.9 for d0/B = 0.15 and d0/B = 0.2, respectively. The simulation for d0/B = 0.05 are divergent

and the results are not listed in the table for comparison.

For near resonant oscillation, xx = 0.95x1, the simulations for x0 = 0.01 m are divergent for all cases.

For x0 = 0.005 m and x0 = 0.007 m, the g+/g� ratios are about the same as those for xx = 5 rad/s for d0/

B = 0.1 and d0/B = 0.15, and the g+/g� ratio is smaller than that for xx = 5 rad/s and d0/B = 0.2. The g+/
g� ratio reduces to around 1 for d0/B = 0.5. The proposed scheme can be applied in a non-resonant oscil-

lation with x0 up to 0.01 m. But the depth/breadth ratio (d0/B) is limited to 0.1 in all simulations.
6. Conclusions

A new time-independent finite difference method has been developed and used to study coupled two-

dimensional and fully non-linear, viscous sloshing motion in tanks. The following conclusions can be
drawn:

1. The time-dependent domain is transformed to a fixed unit square by proper mapping functions. In this

method, re-meshing due to a wavy free surface is avoided and free surface smoothing is also not

required. The meshes near the boundary are stretched to capture the local sharp variations due to vis-

cosity. The finite difference expressions for the viscous diffusion terms are applied in the proper location

to overcome the difficulties associated with decreasing meshes and loss of accuracy.

2. The maximum transient amplitude is much larger than that of the steady-state response. Clear beating
phenomenon occurs when the tank is excited by a near resonance frequency. The viscous effects shift the

resonance frequency peak and also retard the beating phenomenon.

3. For a given frequency, the sloshing amplitude of the free surface at the wall increases linearly with Rey-

nolds number. In other words, for a fixed excitation frequency, the displacement of the sloshing surface

is linearly proportional to the horizontal displacement due to the excitation. However, for a constant

Reynolds number, the sloshing displacement is frequency dependent.

4. Vertical excitation changes the acceleration due to gravity as well as the Froude number of the system,

and this can significantly affect the sloshing displacement. The coupled effects of simultaneous surge,
heave and pitch motions are observed as the non-linearity of the problem becomes prominent, and it

is clear that the coupled motion should be included in the sloshing analysis when the tank is excited

by earthquakes.
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5. The formation of an eddy occurs during the transient period of tank motion under pitch forcing. This

eddy reduces the surface elevation in the tank and enhances mixing of the fluid in the tank. A particular

combination of coupled surge and pitch motion increases the lifetime of the eddy and hence would

achieve better fluid mixing.

6. A simple formula is derived to evaluate the horizontal forces acting on the tank wall. The force is con-
trolled by the added mass effect when the frequency of excitation is large. In contrast, for small excitation

frequencies, the force is proportional to the sloshing displacement at the wall.

7. An FFT analysis of sloshing displacement shows that the dynamic system is controlled by the forcing

frequency when the period of the excitation is large enough for the system to adjust to the external exci-

tation. For a very large forcing frequency, the fundamental frequency will completely dominate the

sloshing fluid.

8. The present numerical method is found to converge for non-resonant oscillation frequencies with a max-

imum surge amplitude up to 0.02d0 and a depth/breadth ratio larger than 0.1.

The time-independent finite difference method introduced in this paper can be extended to the analysis of

three-dimensional tank motions excited simultaneously by six-degree of freedom of motions (surge, pitch,

heave, yaw, roll and sway).
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Appendix I

The coefficients C1–C10 are:
C1 ¼ d0

ox�

ox
¼ d0

b2 � b1
;

C2 ¼ d0

oz�

ox
¼ 1

H 2
ðzþ d0Þ

oH
ox

;

C3 ¼ �d0

ox�

oz
¼ � d0

ðb2 � b1Þ2
ðx� b2Þ

ob1
oz

� ðx� b1Þ
ob2
oz

� �
;

C4 ¼ �d0

oz�

oz
¼ 1

H
;

C5 ¼
d0ffiffiffiffiffiffiffi
gd0

p ox�

ot
¼ � d0ffiffiffiffiffiffiffi

gd0

p
ðb2 � b1Þ2

ðx� b2Þ
ob1
ot

� ðx� b1Þ
ob2
ot

� �
;

C6 ¼
d0ffiffiffiffiffiffiffi
gd0

p oz�

ot
¼ 1ffiffiffiffiffiffiffi

gd0

p
H 2

ðzþ d0Þ
oH
ox

;
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C7 ¼
oX
ox�

¼ ½1þ k1ðx� � b1Þð2x�Þ � 1�ek1x�ðx��1Þ;

C8 ¼
oZ
oz�

¼ ½1þ k2ðz� � b2Þð2z�Þ � 1�ek21z�ðz��1Þ;

C9 ¼ 4p2 x
d0

;

C10 ¼ 2p
z
d0

;

k ¼ d0

B
.

Appendix II

Ui,j+1

Wi,j

Wi,j+1

Ui,j Pi,j

Ui,j R1(i+1,j)R1(i-1,j)

R1(i,j-1)

R1(i,j+1)
R1 ¼ C1C7

oU
oX

þ C2C8

oU
oZ

;

1

Re
C1C2

oR1

oX
þ C2C8

oR1

oZ

� �
at Ui;j

¼ 1

Re
ðC1C2ÞUi;j

R1ðiþ 1; jÞ � R1ði� 1; jÞ
2DX

�

þðC2C8ÞUi;j

R1ði; jþ 1Þ � R1ði; j� 1Þ
2DZ

�
;

where:
R1ðiþ 1; jÞ ¼ ðC1C7ÞUiþ1;j

U iþ2;j � Ui;j

2DX
þ ðC2C8ÞUiþ1;j

U iþ1;jþ1 � Uiþ1;j�1

2DZ
;

R1ði� 1; jÞ ¼ ðC1C7ÞUi�1;j

U i;j � Ui�2;j

2DX
þ ðC2C8ÞUi�1;j

U i�1;jþ1 � Ui�1;j�1

2DZ
;

R1ði; jþ 1Þ ¼ ðC1C7ÞUi;jþ1

Uiþ1;jþ1 � Ui�1;jþ1

2DX
þ ðC2C8ÞUi;jþ1

Ui;jþ2 � Ui;j

2DZ
;
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R1ði; j� 1Þ ¼ ðC1C7ÞUi;j�1

Uiþ1;j�1 � Ui�1;jþ1

2DX
þ ðC2C8ÞUi;j�1

Ui;j � Ui;j�2

2DZ
.

Note that, ðC1C7ÞUi;j�1
denotes (C1C7) are evaluated at Ui,j� 1 position, the other terms have similar

meanings.
Appendix III

Consider the finite difference solution to the one-dimensional diffusion equation
ou=ot ¼ ao2u=ox2 ðAIII-1Þ

with the following boundary conditions: u(0,t) = 0, u(0.04,t) = 40 m/s. A domain mesh that is stretched by

X ¼ b1 þ ðx� b1Þek1xðx�1Þ, with b1 = 1.0 and k1 = 1.0, with DX = 1/40 is illustrated in Fig. AIII-I in the ori-

ginal x coordinate system. After the coordinate transformation (stretching), Eq. (AIII-1) is transformed

into
ou=ot ¼ aC2o2u=oX 2;
where C = oX/ox. The accuracies of three different finite difference approximations, given in Eqs. (AIII-2)
and (AIII-4), are compared:
unþ1
i ¼ uni þ Dt=DX 2C2

i unþ1=2
iþ1 � 2unþ1=2

i þ unþ1=2
i�1


 �
; ðAIII-2Þ

unþ1
i ¼ uni þ Dt=DXCi Ciþ1=2 unþ1=2

iþ1 � unþ1=2
i


 �
� Ci�1=2 unþ1=2

i � unþ1=2
i�1


 �n o.
DX ; ðAIII-3Þ

unþ1
i ¼ uni þ Dt=DXCifCiþ1=2 uniþ1 � uni

� �
� Ci�1=2 uni � uni�1

� �
g=DX ; ðAIII-4Þ
where Ci is C at ui position, Ci+1/2 and Ci� 1/2 are C at ui+1/2 and ui� 1/2 positions, respectively. The super-

scripts of u denotes the time steps, i.e., unþ1
i represents ui at T = (n + 1)DT, the other terms have similar

meaning. Eqs. (AIII-2) and (AIII-3) use the Crank–Nicolson (C–N) method, while Eq. (AIII-4) uses the

forward time central space (FTCS) method.

Fig. AIII-II compares the results obtained using Eqs. (AIII-2)–(AIII-4) with the exact solution. As can

be seen in the figure, the results obtained using Eq. (AIII-3) are the best. Large errors are created when Eq.

(AIII-2) is used. The results shown in Fig. AIII-II justify the adoption of the finite difference approximation

listed in Appendix II for the solution of Eqs. (12) and (13).
x coordinate (m)

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

Fig. AIII-I. The coordinate of each node in x-system after coordinate stretching.
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Fig. AIII-II. The comparison of solution of the accelerated lower plate by the Crank–Nicolson Scheme (Eq. (AIII-2)), Crank–

Nicolson Scheme (Eq. (AIII-3)) and FTCS (Eq. (AIII-4)).
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